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Abstract of First Year Effort

A central problem in developing effective smoke obscurants

for space applications is to maximize volumetric extinction or

absorption at the wavelength of the incident electromagnetic

radiation. Although this is a problem without a general

solution, it is possible to make recommendations based on very

general considerations. One can establish bounds not on

extinction at any wavelength, but rather extinction integrated

over all wavelengths.

A sum rule for extinction is a bound on integrated

volumetric extinction. The existence of such sum rules requires

suitable behavior of volumetric extinction at high and low

frequencies. If, in the limit of low frequency, extinction

decreases as the 1 + a power of frequency, where a is any

positive number, then a sum rule exists. At low frequencies,

the extinction cross section of an ellipsoid composed of either

a simple free-electron metal or a simple insulator is proportional

to frequency squared, which ensures the existence of a sum rule

for extinction by such particles. Only a single type of sum

rule exists because of the rather stringent requirements on

both the low- and high-frequency behavior of particle

extinction cross sections.

We have established that the sum rule for extinction is

not changed when magnetic dipole as well as electric dipole

radiation is considered. Moreover, the limitation of electron

mean free paths in metallic particles does not invalidate sum
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rules. When metallic particles are sufficiently small, the

effect of their boundaries is to decrease peak extinction

while simultaneously broadening it in such a way that integrated

extinction remains constant.

Although integrated extinction is independent of particle

size, sum rules imply that the smallest particles will have the

greatest volumetric extinction. When a particle is illuminated

by an electromagnetic wave, various electromagnetic modes are

excited. The larger the particle, the greater the number of

modes. Thus, a fixed amount of total extinction must be shared

by modes, the number of which increases with increasing particle

size. This implies that the smallest particles have the greatest

extinction.

Two classes of materials, free-electron metals and polar N

insulators, with vastly different properties, nevertheless have

in common that integrated extinction by particles of these

materials is approximately the same.

Volumetric extinction of 104 cm should be looked upon

as a kind of lower bound: it is the value that can be obtained --

without much-effort. What is the upper bound? We must look to

small (compared with the wavelength) metallic particles for the

greatest possible volumetric extinction. Fewer modes are

excited in a sphere thv: in a needle or a disk. Peak extinction
-1 e

by a small aluminum srhpnr-, is about l07 cm . We claim that

this is a practical uEcr b und. Moreover, this bound cannot

X " "AA ^JK A
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be obtained over a wide range of frequencies. A practical

upper bound over at least one decade from the ultraviolet to

the near infrared is 106 cm - 1 and this would have to be

obtained with a mixture of particles having different shapes.

I
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Abstract of Second Year Effort

One of the essential lessons to be learned from sum rules

is that extinction cannot be arbitrarily specified. Integrated

volumetric extinction is independent of particle size and

depends on only the low frequency behavior of the material of

which the particle is composed. This in turn implies that

extinction at one frequency is related to extinction at other

frequencies. From this idea another related one evolved: the

scattering coefficients are not independent. A proof of this

was constructed for scattering by a sphere. The Mie coefficients

are completely specified by the first four of them. A proof of

this and its physical interpretation is given in Appendix A,

a manuscript on recurrence relations for Mie scattering coefficients,

which will appear in a future issue of Journal of the Optical

Society of America.

rI
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Recurrence Relations for the Mie Scattering Coefficients

Craig F. Bohren

Department of Meteorology

Pennsylvania State University

University Park, Pennsylvania 16802

Abstract

The Mie scattering coefficients satisfy recurrence

relations: an 1 bnI , an, and bn, determine an+1 and bn+i*

It is therefore possible, in principle, to generate the entire

set from the first four, which has a simple interpretation.

Each term in a multipole expansion of an electrostatic field can

be obtained by differentiating the preceding term. The Mie

coefficients are terms in a multipole expansion of a particular

electromagnetic field, that scattered by an arbitrary sphere.

By analogy, it is not surprising that all these coefficients can

be generated from the electric and magnetic dipole and

quadrupole terms. Moreover, the recurrence relations for the

Mie coefficients contain finite differences, in analogy with the

infinitesimal differences (derivatives) in the multipole

expansion of an electrostatic field.

* * ** *m • , %• • ° * - . - *. .o * *- '
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The solution to the problem of scattering by an arbitrary

1-5
sphere (Mie theory) yields an infinite set of coefficients

which depend on various Bessel functions and their derivatives.

The usual approach to computing these coefficients is to compute

the Bessel functions by recurrence 5 . This might be called the

natural or direct way of computation. It seems so natural, so

obvious, that, to my knowledge, no one has ever done otherwise,

although there are hints in Ref. 4 (p. 51). What is usually at

issue is not if one should compute Bessel functions but rather

how to do it in the fastest and most accurate way. I have posed

this question differently. The Bessel functions in the

expressions for the scattering coefficients satisfy recurrence

relations. Furthermore, Verner 9 showed that the numerators and

denominators of these coefficients satisfy recurrence relations.

Thus, is it not likely that the coefficients themselves satisfy

recurrence relations? In the following paragraphs I show that

they do and give a physical interpretation of why. My notation

and conventions are those of Ref. 5.

The Mie scattering coefficients can be written as follows:

xD (mx)P (x) + mnn (X) - mxn 1l(x)

n n n -
an = 1 (1)

xD n(mx) n(x) + n n(X) )- mx nl(x)

mxD n(mx)4n (x) + nt n(x) - X~nPl(x)

bn - , (2)
mxDn(mx), n (x) + n n(X) - Xn-l(x)

where D is the logarithmic derivative n/*n, and

Riccati-Bessel functions. The size parameter x is 27a/X , where

a is the radius of the sphere and X is the wavelength of the
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incident light; m is the refractive index of the sphere relative

to that of the surrounding medium. The logarithmic derivative

satisfies the recurrence relation

n 1
Dn-i mx D + n/mx -- (3)

and both of the Riccati-Bessel functions satisfy the recurrence

relation

Z 2n + 1 z z(4)Zn-1 x n n+1

From Eqs. (l)-(4) it follows that any set of six coefficients

are given by

uy + A3uz + BIY + A4z
an- 1 = ,A1 (5)

uv + A3uw + BIv + A4w

uy + BIy + A 2z

b2 (6)uv + B v + A2w

uy + AIy + A 2z

a n (7) :1
n uv + Alv + A2 W

uy + Bly + BZ

b 2 (8)
n uv + B v + B W

1 2

uy uz + A6 Y + A z
-a- ( 9 )an+l -4A

un1 A v + A w
6 7

b n+1 = (10)
A w2

where u D v= .nl Z=~ z = -andnP n,



n2 - mw~x2.2n2 -

4

mnn

A n(l -m 2 ) 4 2 -2x 2  m2 n2

3  m2x A4  m3 x 2

A x(m 2 - 1)(n + I)
(n + 1)(2n + 1)(1 - M 2 ) + m 2 x 2

A - nm2x + (n + 1) 2 (2n + 1)(m 2  - 1)
rx{(n + 1) (2n + 1)(i - M2) + m 2x 2

A7 - (n + 1)2(1 - M 2 ) - m 2x 2

m{(n + 1)(2n + 1)(i - M 2 ) + m 2x2 }

B = (2n + )m 2 - (n + 1)
3 mx

Four quantities (e.g., u, v/y, w/y, z/y) determine any of
the five coefficients an-l, bn-' an, bn , an+l (or bn+1). Thus,
it is possible to solve for any one of these coefficients (e.g.,

an+l or bn+l) in terms of the other four. To do so, we may
consider u to be fixed in Eqs. (5)-(8) and write them in the

form

an(A + u) aA 2  -(A 1 + u) -A2  V,fn 1n212

bn(B1 + u) bnB2  -(B 1 + u) -B2  w

=0
bn-l(B 1 + u) bn-iA 2  -(B1 + u) -A2  y

an-l(B 1 + u) an-l(A3u + A4 ) -(B1 + u) -(A3u + A4 ) z (11)

o"

14
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The determinant of the coefficient matrix in Eq. (11) must

vanish if its solution is to be nontrivial. By setting this

determinant equal to zero, one obtains a cubic equation

satisfied by u. One of its factors is B1 + u, which follows

from inspection of Eq. (11); the root u = -B1 is obviously not

the one desired. The correct value of u is one of the roots of

the quadratic equation

2 A - A4  A(B2 A A4 ) A
- {A1 + 3 u A A 4  0, (12)

where

(an - bn)(an_ - bn-1 )
A (13)

(bn -an- 1 )(an -b )

To obtain these equations it was also necessary to use the

relations A2B 2  1 and A1B2 = A2BI. Which of the two roots of

Eq. (12) is the correct one must be determined by some auxiliary

condition (e.g., the magnitude of the scattering coefficients

cannot exceed unity). Given this root, one can substitute it in

Eq. (11) and determine any three of the set (v,w,y,z) as

multiplicative functions of the fourth. When these functions

and u are substituted into Eq. (9), an+l is obtained as a

function of a b an, bn , the index n, and the properties
nhi b 1 ' nn

of the sphere (x and m). Similarly, bn+i is so obtained. This

completes the proof that any set of four consecutive scattering

coefficients determine the following two.

This result has a simple interpretation. It has long been
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known that each term in the expansion of an electrostatic field

can be obtained by differentiation of the preceding term. This

idea was developed by Maxwell 10 "1 , who used the term "points"

of the nth order, whereas in modern work they would be referred

to as "12n poles" or "multipoles" (see, e.g., Ref. 12). The Mie

coefficients are terms in a multipole expansion of a particular

electromagnetic field, that scattered by an arbitrary sphere.

By analogy, it is not surprising that all of these coefficients

can be generated from the electric (a1 ) and magnetic (bI ) dipole

terms and the electric (a2 ) and magnetic (b2 ) quadrupole terms.

Moreover, the recurrence relations for the Mie coefficients

contain finite differences (see Eq. 13), in analogy with the

infinitesimal differences (derivatives) in the multipole

expansion of an electrostatic field. A possible interpretation

of why the multipoles in Mie theory are connected by finite

differences is that this theory applies to particles with finite

(relative to the wavelength) dimensions. In contrast, the

wavelength is infinite (alternatively, the speed of light is

infinite) in electrostatics. A further difference between

electrostatics (and magnetostatics) and electrodynamics is that

in static theories the electric and magnetic terms are distinct:

electric terhs are connected only to electric terms (and

similarly for magnetic terms). But when the propagation time

over characteristic distances is not negligible compared with

the period (e.g., when x = wa/c is not negligible, where c is

the speed of light, and a is the radius of a particle

illuminated by light of circular frequency w), then electric and
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magnetic multipoles are inextricably connected.

Whether or not the recurrence relations can simplify

scattering calculations must be determined by extensive

calculations. It is not known if the recurrence relations are

stable, either upward or downward. And one must devise a simple

test for which root of Eq. (12) is the proper one. These are

matters for further investigation. Nevertheless, merely knowing

that the scattering coefficients can be generated by recurrence

gives new insights. It is for this reason that I have set them

down, not because they will necessarily reduce computation time.

I am indebted to Nels Shirer, Robert Wells, Warren

Wiscombe, and Akhlesh Lakhtakia for their valuable suggestions

and comments. And I sincerely thank William Doyle and Milton

Kerker not only for helping me with the technical aspects of

the work reported here but also for encouraging me to carry it

out. This work was supported, in part, by a grant from the Air

Force Office of Scientific Research, Directorate of Electronic

and Material Science.
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